四则运算符(+、-、*、/、+=、-=、*=、/=)和关系运算符(>、<、<=、>=、==、!=)都是数学运算符,它们在实际开发中非常常见,被重载的几率也很高,并且有着相似的重载格式。本节以复数类 Complex 为例对它们进行重载,重在演示运算符重载的语法以及规范。
复数能够进行完整的四则运算,但不能进行完整的关系运算:我们只能判断两个复数是否相等,但不能比较它们的大小,所以不能对 >、<、<=、>= 进行重载。下面是具体的代码:
#include <iostream>
#include <cmath>
using namespace std;
//复数类
class Complex
{
public: //构造函数
Complex(double real = 0.0, double imag = 0.0): m_real(real), m_imag(imag){ }
public: //运算符重载
//以全局函数的形式重载
friend Complex operator+(const Complex &c1, const Complex &c2);
friend Complex operator-(const Complex &c1, const Complex &c2);
friend Complex operator*(const Complex &c1, const Complex &c2);
friend Complex operator/(const Complex &c1, const Complex &c2);
friend bool operator==(const Complex &c1, const Complex &c2);
friend bool operator!=(const Complex &c1, const Complex &c2);
//以成员函数的形式重载
Complex & operator+=(const Complex &c);
Complex & operator-=(const Complex &c);
Complex & operator*=(const Complex &c);
Complex & operator/=(const Complex &c);
public: //成员函数
double real() const{ return m_real; }
double imag() const{ return m_imag; }
private:
double m_real; //实部
double m_imag; //虚部
};
//重载+运算符
Complex operator+(const Complex &c1, const Complex &c2)
{
Complex c;
c.m_real = c1.m_real + c2.m_real;
c.m_imag = c1.m_imag + c2.m_imag;
return c;
}
//重载-运算符
Complex operator-(const Complex &c1, const Complex &c2)
{
Complex c;
c.m_real = c1.m_real - c2.m_real;
c.m_imag = c1.m_imag - c2.m_imag;
return c;
}
//重载*运算符 (a+bi) * (c+di) = (ac-bd) + (bc+ad)i
Complex operator*(const Complex &c1, const Complex &c2)
{
Complex c;
c.m_real = c1.m_real * c2.m_real - c1.m_imag * c2.m_imag;
c.m_imag = c1.m_imag * c2.m_real + c1.m_real * c2.m_imag;
return c;
}
//重载/运算符 (a+bi) / (c+di) = [(ac+bd) / (c²+d²)] + [(bc-ad) / (c²+d²)]i
Complex operator/(const Complex &c1, const Complex &c2)
{
Complex c;
c.m_real = (c1.m_real*c2.m_real + c1.m_imag*c2.m_imag) / (pow(c2.m_real, 2) + pow(c2.m_imag, 2));
c.m_imag = (c1.m_imag*c2.m_real - c1.m_real*c2.m_imag) / (pow(c2.m_real, 2) + pow(c2.m_imag, 2));
return c;
}
//重载==运算符
bool operator==(const Complex &c1, const Complex &c2)
{
if( c1.m_real == c2.m_real && c1.m_imag == c2.m_imag )
{
return true;
}
else
{
return false;
}
}
//重载!=运算符
bool operator!=(const Complex &c1, const Complex &c2)
{
if( c1.m_real != c2.m_real || c1.m_imag != c2.m_imag )
{
return true;
}
else
{
return false;
}
}
//重载+=运算符
Complex & Complex::operator+=(const Complex &c)
{
this->m_real += c.m_real;
this->m_imag += c.m_imag;
return *this;
}
//重载-=运算符
Complex & Complex::operator-=(const Complex &c)
{
this->m_real -= c.m_real;
this->m_imag -= c.m_imag;
return *this;
}
//重载*=运算符
Complex & Complex::operator*=(const Complex &c)
{
this->m_real = this->m_real * c.m_real - this->m_imag * c.m_imag;
this->m_imag = this->m_imag * c.m_real + this->m_real * c.m_imag;
return *this;
}
//重载/=运算符
Complex & Complex::operator/=(const Complex &c)
{
this->m_real = (this->m_real*c.m_real + this->m_imag*c.m_imag) / (pow(c.m_real, 2) + pow(c.m_imag, 2));
this->m_imag = (this->m_imag*c.m_real - this->m_real*c.m_imag) / (pow(c.m_real, 2) + pow(c.m_imag, 2));
return *this;
}
int main()
{
Complex c1(25, 35);
Complex c2(10, 20);
Complex c3(1, 2);
Complex c4(4, 9);
Complex c5(34, 6);
Complex c6(80, 90);
Complex c7 = c1 + c2;
Complex c8 = c1 - c2;
Complex c9 = c1 * c2;
Complex c10 = c1 / c2;
cout<<"c7 = "<<c7.real()<<" + "<<c7.imag()<<"i"<<endl;
cout<<"c8 = "<<c8.real()<<" + "<<c8.imag()<<"i"<<endl;
cout<<"c9 = "<<c9.real()<<" + "<<c9.imag()<<"i"<<endl;
cout<<"c10 = "<<c10.real()<<" + "<<c10.imag()<<"i"<<endl;
c3 += c1;
c4 -= c2;
c5 *= c2;
c6 /= c2;
cout<<"c3 = "<<c3.real()<<" + "<<c3.imag()<<"i"<<endl;
cout<<"c4 = "<<c4.real()<<" + "<<c4.imag()<<"i"<<endl;
cout<<"c5 = "<<c5.real()<<" + "<<c5.imag()<<"i"<<endl;
cout<<"c6 = "<<c6.real()<<" + "<<c6.imag()<<"i"<<endl;
if(c1 == c2)
{
cout<<"c1 == c2"<<endl;
}
if(c1 != c2)
{
cout<<"c1 != c2"<<endl;
}
return 0;
}
运行结果:
c7 = 35 + 55i
c8 = 15 + 15i
c9 = -450 + 850i
c10 = 1.9 + -0.3i
c3 = 26 + 37i
c4 = -6 + -11i
c5 = 220 + 4460i
c6 = 5.2 + 1.592i
c1 != c2
需要注意的是,我们以全局函数的形式重载了 +、-、*、/、==、!=,以成员函数的形式重载了 +=、-=、*=、/=,而且应该坚持这样做,不能一股脑都写作成员函数或者全局函数,具体原因我们将在下节《到底以成员函数还是全局函数(友元函数)的形式重载运算符》讲解。